منابع مشابه
$C^{*}$-semi-inner product spaces
In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.
متن کاملFrames in 2-inner Product Spaces
In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames.
متن کاملAtomic Systems in 2-inner Product Spaces
In this paper, we introduce the concept of family of local atoms in a 2-inner product space and then this concept is generalized to an atomic system. Besides, a characterization of an atomic system lead to obtain a new frame. Actually this frame is a generalization of previous works.
متن کاملA Comparative Study of Fuzzy Inner Product Spaces
In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.
متن کاملInner Product Spaces and Orthogonality
1 Dot product of R The inner product or dot product of R is a function 〈 , 〉 defined by 〈u,v〉 = a1b1 + a2b2 + · · ·+ anbn for u = [a1, a2, . . . , an] , v = [b1, b2, . . . , bn] ∈ R. The inner product 〈 , 〉 satisfies the following properties: (1) Linearity: 〈au + bv,w〉 = a〈u,w〉+ b〈v,w〉. (2) Symmetric Property: 〈u,v〉 = 〈v,u〉. (3) Positive Definite Property: For any u ∈ V , 〈u,u〉 ≥ 0; and 〈u,u〉 =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Notre Dame Journal of Formal Logic
سال: 1978
ISSN: 0029-4527
DOI: 10.1305/ndjfl/1093888521